〜 自動運転技術に関わる識別・認識・検出・推定への応用、人工知能とニューラルネットワーク、画像処理・認識技術、深層学習への発展 〜
・体系的にパターン認識技術を学び、車載システムなどの応用システム開発に活かすための講座
・統計的パターン認識技術から最近話題の深層学習までを修得し、自動運転のための重要な要素技術および車載システムや画像認識システムなどへ応用しよう!
〜 自動運転技術に関わる識別・認識・検出・推定への応用、人工知能とニューラルネットワーク、画像処理・認識技術、深層学習への発展 〜
・体系的にパターン認識技術を学び、車載システムなどの応用システム開発に活かすための講座
・統計的パターン認識技術から最近話題の深層学習までを修得し、自動運転のための重要な要素技術および車載システムや画像認識システムなどへ応用しよう!
大衆車クラスの自動車にも自動ブレーキシステムが装備されるなど、人工知能技術を用いた自動運転が現実のものとなりつつあります。また、深層学習を用いたalphaGOが碁の名人に勝つなど、従来の技術では困難とされていた分野にも人工知能技術が浸透し始めています。しかし、これらの技術が、実際に何を行っているのかということに関しての理解は、必ずしも進んでいません。
本セミナーでは、かつての人工知能ブームから、深層学習に代表される現在の人工知能技術への道筋を示し、現在の人工知能技術の基盤となるパターン認識技術について解説します。また、自動運転技術の重要な要素である歩行者検出技術、障害物検知技術の基本的な手法も紹介します。
開催日時 |
|
---|---|
開催場所 | 日本テクノセンター研修室 |
カテゴリー | ソフト・データ・画像・デザイン |
受講対象者 | ・人工知能技術に興味のある方 ・画像処理、画像認識技術に興味のある方 ・自動車での歩行者、障害物検出技術に興味のある方 |
予備知識 | ・基本的な数学知識(確率、統計) |
修得知識 | ・歩行者検出などのパターン認識技術が、何を根拠に検出・認識・識別を行っているか ・深層学習(Deep Learning)と従来の人工知能技術との違い、あるいは共通点 |
プログラム |
1.人工知能技術の歴史
2.ニューラルネットワーク
3.多変量解析技術、統計的パターン認識技術
4.画像認識技術
5.応用例(自動運転技術に関わる識別・認識・検出・推定)
6.まとめに代えて(深層学習への発展) |
キーワード | 人工知能 ニューラルネットワーク 多変量解析 統計的パターン認識 画像処理 サポートベクトルマシン 深層学習 Deep Neuel Net |
タグ | 自動運転・運転支援技術・ADAS、統計・データ解析、データ解析、画像処理、画像認識、自動車・輸送機、車載機器・部品 |
受講料 |
一般 (1名):49,500円(税込)
同時複数申込の場合(1名):44,000円(税込) |
会場 |
日本テクノセンター研修室〒 163-0722 東京都新宿区西新宿2-7-1 新宿第一生命ビルディング(22階)- JR「新宿駅」西口から徒歩10分 - 東京メトロ丸ノ内線「西新宿駅」から徒歩8分 - 都営大江戸線「都庁前駅」から徒歩5分 電話番号 : 03-5322-5888 FAX : 03-5322-5666 |
こちらのセミナーは受付を終了しました。
次回開催のお知らせや、類似セミナーに関する情報を希望される方は、以下よりお問合せ下さい。
営業時間 月~金:9:00~17:00 / 定休日:土日・祝日