セミナー情報

パターン認識技術と自動運転技術への応用・例 

〜 自動運転技術に関わる識別・認識・検出・推定への応用、人工知能とニューラルネットワーク、画像処理・認識技術、深層学習への発展 〜

・体系的にパターン認識技術を学び、車載システムなどの応用システム開発に活かすための講座

・統計的パターン認識技術から最近話題の深層学習までを修得し、自動運転のための重要な要素技術および車載システムや画像認識システムなどへ応用しよう!

講師の言葉

 大衆車クラスの自動車にも自動ブレーキシステムが装備されるなど、人工知能技術を用いた自動運転が現実のものとなりつつあります。また、深層学習を用いたalphaGOが碁の名人に勝つなど、従来の技術では困難とされていた分野にも人工知能技術が浸透し始めています。しかし、これらの技術が、実際に何を行っているのかということに関しての理解は、必ずしも進んでいません。
 本セミナーでは、かつての人工知能ブームから、深層学習に代表される現在の人工知能技術への道筋を示し、現在の人工知能技術の基盤となるパターン認識技術について解説します。また、自動運転技術の重要な要素である歩行者検出技術、障害物検知技術の基本的な手法も紹介します。

セミナー詳細

開催日時 2017年10月11日(水) 10:30 ~ 17:30
開催場所 【東京】日本テクノセンター研修室
カテゴリー ソフト・データ解析・画像・デザイン
受講対象者 ・人工知能技術に興味のある方
・画像処理、画像認識技術に興味のある方
・自動車での歩行者、障害物検出技術に興味のある方
予備知識 ・基本的な数学知識(確率、統計)
修得知識 ・歩行者検出などのパターン認識技術が、何を根拠に検出・認識・識別を行っているか
・深層学習(Deep Learning)と従来の人工知能技術との違い、あるいは共通点
プログラム

1.人工知能技術の歴史
  (1).黎明期?
  (2).第一次人工知能ブーム
  (3).第一次ニューラルネットワークブーム
  (4).多変量解析、統計的パターン認識技術
  (5).第二次人工知能ブーム


2.ニューラルネットワーク
  (1).生体の神経モデル
  (2).パーセプトロン
  (3).ホップフィールドネットワーク
  (4).誤差逆伝搬学習


3.多変量解析技術、統計的パターン認識技術
  (1).類似性、非類似性、距離
  (2).確率分布とベイズ推定
  (3).損失関数と線形識別手法
  (4).サポートベクトルマシン
  (5).非線形識別手法(カーネル法).
  (6).アンサンブル学習と階層型サポートベクトルマシン


4.画像認識技術
  (1).特徴量
  (2).画像処理・認識技術
  (3).画像認識技術の例
    a.顔検出
    b.両検出
    c.トラッキング


5.応用例(自動運転技術に関わる識別・認識・検出・推定)
  (1).歩行者検出技術
  (2).後側方車両検出技術
  (3).路面領域推定技術


6.まとめに代えて(深層学習への発展) 
  (1).第二次ニューラルネットワークブームへ
  (2).第一次ニューラルネットワークブームとの違い
  (3).Deep Neural Net
    a.Deep Neural Net の例
    b.Deep Neural Net各層の役割
    c.学習手法

キーワード 人工知能 ニューラルネットワーク 多変量解析 統計的パターン認識 画像処理 サポートベクトルマシン 深層学習 Deep Neuel Net  
タグ データ解析  画像処理  画像認識  自動車・輸送機  車載機器・部品  統計・データ解析
受講料 一般(1名) : 48,600円 (税込み)
同時複数申し込みの場合(1名) : 43,200円 (税込み)
会場 日本テクノセンター研修室
住所: 〒 163-0722 東京都新宿区西新宿小田急第一生命ビル(22階)
- JR「新宿駅」西口から徒歩10分
- 東京メトロ丸ノ内線「西新宿駅」から徒歩8分
- 都営大江戸線「都庁前駅」から徒歩5分
電話番号 : 03-5322-5888
FAX : 03-5322-5666

このセミナーに参加する

申込用紙のダウンロード

メールを送信する

カテゴリ:

電気・機械・メカトロ・設備成形・加工・接着接合・材料化学・環境・異物対策ソフト・データ・画像・デザイン品質・生産管理・コスト・安全研究開発・ビジネススキル

Page Top